Weighted Least Absolute Deviation Lasso Estimator
نویسنده
چکیده
The linear absolute shrinkage and selection operator(Lasso) method improves the low prediction accuracy and poor interpretation of the ordinary least squares(OLS) estimate through the use of L1 regularization on the regression coefficients. However, the Lasso is not robust to outliers, because the Lasso method minimizes the sum of squared residual errors. Even though the least absolute deviation(LAD) estimator is an alternative to the OLS estimate, it is sensitive to leverage points. We propose a robust Lasso estimator that is not sensitive to outliers, heavy-tailed errors or leverage points.
منابع مشابه
Robust Regression through the Huber’s criterion and adaptive lasso penalty
The Huber’s Criterion is a useful method for robust regression. The adaptive least absolute shrinkage and selection operator (lasso) is a popular technique for simultaneous estimation and variable selection. The adaptive weights in the adaptive lasso allow to have the oracle properties. In this paper we propose to combine the Huber’s criterion and adaptive penalty as lasso. This regression tech...
متن کاملRobust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso
The least absolute deviation (LAD) regression is a useful method for robust regression, and the least absolute shrinkage and selection operator (lasso) is a popular choice for shrinkage estimation and variable selection. In this article we combine these two classical ideas together to produce LAD-lasso. Compared with the LAD regression, LAD-lasso can do parameter estimation and variable selecti...
متن کاملEstimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications
The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including ...
متن کاملVariable Selection in High-dimensional Varying-coefficient Models with Global Optimality
The varying-coefficient model is flexible and powerful for modeling the dynamic changes of regression coefficients. It is important to identify significant covariates associated with response variables, especially for high-dimensional settings where the number of covariates can be larger than the sample size. We consider model selection in the high-dimensional setting and adopt difference conve...
متن کاملRegression Coefficient and Autoregressive Order Shrinkage and Selection via Lasso
The least absolute shrinkage and selection operator (lasso) has been widely used in regression shrinkage and selection. In this article, we extend its application to the REGression model with AutoRegressive errors (REGAR). Two types of lasso estimators are carefully studied. The first is similar to the traditional lasso estimator with only two tuning parameters (one for regression coefficients ...
متن کامل